Условные графические и буквенные обозначения реле на электрических схемах

Содержание:

Эксплуатация ЭМР, частые неисправности оборудования

Реле — устройство с ограниченным механическим ресурсом: в процессе его эксплуатации периодически сгорает, контакты изнашиваются, на их поверхности образуется нагар. Именно поэтому при плановом техобслуживании ЭМР обязательно требуется чистка. Кроме того, стоит учитывать, что оборудование любого типа рассчитано на определённое число срабатываний. Это связано с тем, что под действием искр и электрической дуги, которая формируется при коммутации, происходит постепенное разрушение металла.

Самыми частыми проблемами, возникающими при эксплуатации реле, становится обрыв провода катушки или возникновение в ней межвиткового замыкания. Признаками подобной неисправности может стать громкий гул ЭМР, отказ при включении. Внешне о локальном перегреве и межвитковом замыкании может свидетельствовать потемнения на катушке. Об износе контактов может свидетельствовать треск реле.

При отключении цепи ЭМР может остаться в активном состоянии, в этом случае происходит «залипание» контактов. Для проверки технического состояния катушки используют мультиметр или прозвонку. Если цепь замкнута, обрыва нет. При подаче напряжения на обмотку контактная группа должна сработать, а сопротивление цепи — равно нулю. В рамках планового обслуживания выполняется чистка оборудования от пыли, загрязнений.

Основы исполнения привода

Термин «реле» является характерным для устройств, которыми обеспечивается электрическое соединение между двумя и более точками посредством управляющего сигнала.

Наиболее распространенным и широко используемым типом электромагнитного реле (ЭМР) является электромеханическая конструкция.

Так выглядит одна конструкция из многочисленного ряда изделий, именуемых как электромагнитные реле. Здесь показан закрытый вариант механизма с помощью крышки из прозрачного оргстекла

Схема фундаментального контроля над любым оборудованием всегда предусматривает возможность включения и отключения. Самый простой способ выполнить эти действия — использовать переключатели блокировки подачи питания.

Переключатели ручного действия могут использоваться для управления, но имеют недостатки. Явный их недостаток – установка состояний «включено» или «отключено» физическим путем, то есть вручную.

Устройства ручного переключения, как правило, крупногабаритные, замедленного действия, способные коммутировать небольшие токи.

Ручной механизм переключения – «дальний родственник» электромагнитных реле. Обеспечивает тем же функционалом – коммутацией рабочих линий, но управляется исключительно вручную

Между тем электромагнитные реле представлены в основном переключателями с электрическим управлением. Приборы имеют разные формы, габариты и разделяются по уровню номинальных мощностей. Возможности их применения обширны.

Такие приборы, оснащенные одной или несколькими парами контактов, могут входить в единую конструкцию более крупных силовых исполнительных механизмов — контакторов, что используются для коммутации сетевого напряжения или высоковольтных устройств.

Общее устройство реле

Простейшая схема реле включает в свой состав якорь, магниты и соединяющие элементы. Когда на электромагнит подается ток, происходит замыкание якоря с контактом и дальнейшее замыкание всей цепи.

При уменьшении тока до определенной величины, давящая сила пружины возвращает якорь в исходное положение, в результате, наступает размыкание цепи. Более точная работа устройства обеспечивается использованием резисторов. Для защиты от искрения и перепадов напряжения применяются конденсаторы.

В большинстве электромагнитных реле устанавливается не одна пара контактов, а несколько. Это дает возможность управления сразу многими электрическими цепями.

Напряжение питания катушки

На корпусе реле написано, например, 12 В, что означает для его срабатывания потребуется 12 В. Вот только редко бывает напряжение точно требуемого значения. И что делать если напряжение в схеме упадёт до 9 В или повыситься до 15 В?

Если напряжение будет слишком высоким, катушка соленоида, обычно герметично закрытая в небольшом пластиковом корпусе, просто перегреется. Закон Джоуля здесь неумолим. К счастью производители предоставляют некоторый запас по напряжению. И наоборот, если напряжение слишком низкое, через катушку постоянного сопротивления будет протекать меньший ток, что сделает якорь менее слабым на притягивание. А если сила тока слишком низкая, якорь вообще не сдвинется с места.

Это значение, при котором производитель гарантирует замыкание контакта. Оно дается для строго определенной температуры, чаще всего комнатной или аналогичной. При более высоких температурах сопротивление провода увеличивается, поэтому приложение того же напряжения к катушке вызовет протекание более низкого тока (что может быть недостаточно для перемещения якоря).

Напряжение отключения (отпускания) информирует, до какого значения необходимо снизить напряжение питания катушки, чтобы контакты вернулись в исходное положение. Часто это всего лишь 10% от номинального напряжения! Таким образом, реле с напряжением питания 5 В, указанным на корпусе, отключится когда падение напряжения упадёт до 0,5 В, что даже меньше прямого напряжения кремниевых p-n переходов. Разница в процентах вызвана магнитным гистерезисом ферромагнитного материала, из которого изготовлен сердечник электромагнита. 

Это очень удобно, поскольку позволяет значительно снизить энергопотребление катушки в установившемся режиме. Реле с номинальным напряжением питания 12 В достаточно для подачи напряжения выше 8,4 В, а затем его понижения (например до 2 В). Экономия электроэнергии, важная для схем с батарейным питанием, будет огромной.

Фактическое напряжение питания катушки может отличаться от указанного на корпусе, и в довольно широких пределах. Об этом стоит помнить. Подтянув якорь электромагнитом, можно снизить напряжение питания катушки и сэкономить энергию.

Параметры

Основными характеристиками реле являются:

  1. Чувствительность — переключение от подаваемого в обмотку сигнала определенной мощности, достаточной, чтобы происходило включение.
  2. Сопротивление обмотки.
  3. Напряжение (ток) срабатывания — минимальное пороговое значение параметра, при котором контакты переключаются.
  4. Напряжение (ток) отпускания.
  5. Время срабатывания.
  6. Рабочий ток (напряжение) — величина, при которой происходит гарантированное включение в процессе эксплуатации (значение указывается в заданных пределах).
  7. Время отпускания.
  8. Частота включений с нагрузкой на контактах.

Отрывок, характеризующий Нормально замкнутые контакты

– Нет. Я говорю только, что убеждают в необходимости будущей жизни не доводы, а то, когда идешь в жизни рука об руку с человеком, и вдруг человек этот исчезнет там в нигде, и ты сам останавливаешься перед этой пропастью и заглядываешь туда. И, я заглянул… – Ну так что ж! вы знаете, что есть там и что есть кто то? Там есть – будущая жизнь. Кто то есть – Бог. Князь Андрей не отвечал. Коляска и лошади уже давно были выведены на другой берег и уже заложены, и уж солнце скрылось до половины, и вечерний мороз покрывал звездами лужи у перевоза, а Пьер и Андрей, к удивлению лакеев, кучеров и перевозчиков, еще стояли на пароме и говорили. – Ежели есть Бог и есть будущая жизнь, то есть истина, есть добродетель; и высшее счастье человека состоит в том, чтобы стремиться к достижению их. Надо жить, надо любить, надо верить, – говорил Пьер, – что живем не нынче только на этом клочке земли, а жили и будем жить вечно там во всем (он указал на небо). Князь Андрей стоял, облокотившись на перила парома и, слушая Пьера, не спуская глаз, смотрел на красный отблеск солнца по синеющему разливу. Пьер замолк. Было совершенно тихо. Паром давно пристал, и только волны теченья с слабым звуком ударялись о дно парома. Князю Андрею казалось, что это полосканье волн к словам Пьера приговаривало: «правда, верь этому». Князь Андрей вздохнул, и лучистым, детским, нежным взглядом взглянул в раскрасневшееся восторженное, но всё робкое перед первенствующим другом, лицо Пьера. – Да, коли бы это так было! – сказал он. – Однако пойдем садиться, – прибавил князь Андрей, и выходя с парома, он поглядел на небо, на которое указал ему Пьер, и в первый раз, после Аустерлица, он увидал то высокое, вечное небо, которое он видел лежа на Аустерлицком поле, и что то давно заснувшее, что то лучшее что было в нем, вдруг радостно и молодо проснулось в его душе. Чувство это исчезло, как скоро князь Андрей вступил опять в привычные условия жизни, но он знал, что это чувство, которое он не умел развить, жило в нем. Свидание с Пьером было для князя Андрея эпохой, с которой началась хотя во внешности и та же самая, но во внутреннем мире его новая жизнь.

Герконовые реле

Существует такая разновидность электромагнитных реле как герконовое реле.

Геркон — это сокращение от слов «герметизированный контакт».

В обычном реле в большинстве случаев контакты работает в окружающем воздухе, в котором содержатся водяные пары, пыль и кислород, способствующий окислению рабочих поверхностей.

В герконах же контакты находятся в герметичной стеклянной капсуле, которая может быть заполнена осушенным воздухом, инертным газом или вакуумом.

Капсула с контактами помещается внутри обмотки.

Следствием этого является гораздо больший ресурс работы, превышающий на порядок ресурс обычных контактов.

Так, обычно реле должно обеспечить порядка 100 000 срабатываний контактов.

Герконовое же может обеспечить миллион срабатываний и более.

Впечатляющая разница, не так ли?

Капсула с контактами может быть заполнена ртутью для уменьшения электрического сопротивления.

Виды контактных групп

Электромагнитные реле делят по способу работы контактов. Они могут быть:

  • Нормально замкнутыми (закрытыми, размыкающими). Сокращенно обозначаются НЗ, на импортных схемах NC.
  • Нормально разомкнутыми (открытыми, замыкающими). Обозначение — НО на наших — и NO на зарубежных.
  • Перекидными (переключающими). Перекидные отличаются внешне, так как имеют три пластины с контактами. У них обычно обознается только общий контакт — пишут «общ» или comon.

В общем-то, по названиям контактов ясно, как они работают. Нормально замкнутые контакты в исходном состоянии замкнуты, через них протекает ток. При сработке реле контакты размыкаются, цепь питания обрывается.

Нормально закрытый (замкнутый) контакт: что значит и принцип работы

Нормально открытые (понятнее — нормально разомкнутые) контакты, наоборот, в обычном состоянии разомкнуты. Когда реле срабатывает, контакт замыкается, в цепи возникает ток.

Электромагнитное реле с нормально открытым (разомкнутым) контактом

Наверное, уже понятно как работают переключающий контакт. В отличие от первых двух, переключающий состоит из трех пластин. По краям две неподвижные и подвижная в центре. Подвижный контакт часто называют общим. В нормальном положении подвижная пластина касается одного из контактов, ток протекает по этому пути (на рисунке снизу справа).

Принцип работы электромагнитного реле с переключающими контактами

При срабатывании реле, подвижный контакт изменяет положение благодаря упорной рамке (на рисунке это просто штырь, припаянный к подвижной пластине). А рамка прикреплена к якорю. После срабатывания реле, в первой цепи появляется разрыв, во второй начинает протекать ток.

Это все типы контактов — вроде не так много. Но в одном реле могут быть собраны все три вида, и количество групп каждого виды бывает разным. Их выбирают в зависимости от необходимости.

Герконовые реле

Существует такая разновидность электромагнитных реле как герконовое реле.

Геркон — это сокращение от слов «герметизированный контакт».

В обычном реле в большинстве случаев контакты работает в окружающем воздухе, в котором содержатся водяные пары, пыль и кислород, способствующий окислению рабочих поверхностей.

В герконах же контакты находятся в герметичной стеклянной капсуле, которая может быть заполнена осушенным воздухом, инертным газом или вакуумом.

Капсула с контактами помещается внутри обмотки.

Следствием этого является гораздо больший ресурс работы, превышающий на порядок ресурс обычных контактов.

Так, обычно реле должно обеспечить порядка 100 000 срабатываний контактов.

Герконовое же может обеспечить миллион срабатываний и более.

Впечатляющая разница, не так ли?

Капсула с контактами может быть заполнена ртутью для уменьшения электрического сопротивления.

Внешний вид электромагнитного реле

Дело как раз в том, что принцип электромагнита используется в очень важном электротехническом изделии: в электромагнитном реле. Возьмем простое электромагнитное  реле

Возьмем простое электромагнитное  реле

Давайте же посмотрим, что на нем написано:

TDM ELECTRIC — видимо производитель. РЭК 78/3 — название реле. Дальше идет самое интересное. Мы видим какие то полоски и цифры.  Контакты с 1 по 9  — это и есть  коммутационные контакты реле, 10 и 11 — это катушка реле.

Теперь обо всем по порядку.  Реле состоит из коммутационных контактов. Что значит словосочетание «коммутационные контакты»? Это контакты, которые осуществляют переключение. Катушка — это медный провод, намотанный на цилиндрическую железку. В результате, соленоид превращается в электромагнит, если на его концы подать напряжение.

Еще чуть ниже мы видим такие надписи, как 5А/230 В~ и 5А 24 В=. Это максимальные параметры, которые могут коммутировать контакты реле. Эти параметры желательно не превышать и брать с большим запасом. Иначе при превышении допустимых параметров контакты реле  могут обгореть, либо полностью выгореть, что в свою очередь приведет к полному выходу из строя электромагнитного реле.

Когда напряжение на катушку мы НЕ подаем, то контакт 1 соединяется с 7, 2 с 8, 3 с 9

Иными словами, если достать мультиметр, то можно прозвонить контакты 1 и 7, 2 и 8, 3 и 9. Мультиметр должен показать 0 Ом.

Если же мы подаем напряжение на катушку, то группа контактов перебрасывается. В результате соединяется 4 с 7, 5 с 8, 6 с 9. 

Какое же напряжение подавать на катушку? На катушке уже есть ответ. Написано 12 VDC. DC — это постоянный ток, АС — переменный. Значит, на катушку  подаем 12 Вольт постоянного тока.

С другой стороны мы видим те самые контакты. Слева-направо и сверху-вниз идет нумерация контактов:

ПРИМЕНЕНИЕ ЭЛЕКТРОМАГНИТНЫХ РЕЛЕ

Пожалуй, наиболее широкое распространение реле, работающие с использованием электромагнитного принципа получили в сфере распределения и производства электрической энергии.

Релейная защита высоковольтных линий обеспечивает безаварийный режим работы подстанций и другого подключенного оборудования.

Управляющие элементы, используемые в установках релейной защиты рассчитаны на коммутацию присоединения при рабочих напряжениях, достигающих нескольких сотен тысяч вольт. Широкое распространение релейной защиты высоковольтных линий обусловлено:

  • высокой долговечностью релейных элементов;
  • быстрой реакцией на изменение параметров подключенных линий;
  • способностью работы в условиях высокой напряженности электромагнитных полей и нечувствительностью к появлению паразитных электрических потенциалов.

Также посредством установок релейной защиты осуществляется резервирование линий электропередач и моментальный вывод из работы поврежденных участков электросети, к примеру, при замыкании линии на землю или обрыве токоведущих частей. На сегодняшний день еще не изобретены более надежные средства защиты линий электропередач чем релейная защита.

Кроме того, в настоящее время электромагнитный тип реле широко используется в системах управления производственными, конвейерными линиями. Чаще всего данный вид систем управления используется на производствах с наличием высоких паразитных потенциалов делающих невозможным использование полупроводниковых систем управления.

К примеру, известен случай, когда при модернизации систем управления конвейерными линиями на одном из элеваторов новое оборудование, построенное новейших полупроводниковых элементах, постоянно выходило из строя.

Как позже выяснилось причиной поломки стало статическое электричество, возникающее при движении зерна по конвейерной ленте, а так как система выравнивания потенциалов была не предусмотрена в данных помещениях, то стал вопрос о переносе пульта управления в защищенное помещение.

Это было сопряжено с огромными материальными затратами. В результате было принято решение перейти на релейные блоки управления, нечувствительные к статическому напряжению.

Принципы работы заложенные в основу функционирования электромагнитных реле используются в устройствах дистанционного управления нагрузкой — пускателях или контакторах.

Принцип работы этих устройств во многом напоминает работу реле, с той лишь разницей, что предназначены данные устройства для коммутации силовых цепей сила тока, в которых может достигать 1000 А, а в случае особо мощных установок и выше.

Помимо низковольтного оборудования релейные блоки используются для управления, конденсаторными установками, которые используются для плавного пуска электрических двигателей высокой мощности.

Но самым знаковым применением реле электромагнитного типа является их использование в первых электронно-вычислительных машинах, в качестве логических элементов способных выполнять простейшие логические операции. Не смотря на низкое быстродействие эти первые компьютеры по надежности превосходили следующее поколение ламповых вычислительных комплексов.

Простейшими примерами использования электромагнитного реле в повседневной жизни являются реле управления в различных видах бытовой техники: холодильниках, стиральных машинах и т.п.

2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Электрические реле, принцип работы, разновидности, применение, схемы

Электрическое реле устройство, в котором при достижении определенно значения входной величины, выходная величина изменяется скачком — выходные контакты либо замыкаются — в управляемой цепи появляется ток (напряжение), либо размыкаются. Реле применяют в цепях управления с током менее 1 А. Входной величиной реле могут быть механические, тепловые, электрические и другие внешние воздействия.

На рис 2.15, а показано устройство простейшего электромагнитного реле клапанного типа: при определенной МДС в цепи управления возникающая электромагнитная сила F притяжения якоря 3 к ярму 1 превышает силу противодействующей пружины 2. Реле срабатывает, воздушный зазор уменьшается, клапан 4 нажимает на подвижный контакт 5 и прижимает его с силой F, зависящей от значения воздушного зазора в конце хода якоря, к неподвижному контакту 6.

Управляемая цепь (цепь управления) замыкается, исполнительный элемент 7 производит требуемое действие. Контакты реле в исходном положении могут быть как разомкнуты, так и замкнуты, в последнем случае при срабатывании реле они размыкаются — действие какихлибо устройств прекращается. Первоначально открытые (замыкающие) контакты изображают на схемах, как показано на рис. 2.16, а, первоначально закрытые (размыкающие) контакты имеют условное обозначение, показанное на рис. 2.16, б.

Многие электромагнитные реле имеют несколько контактных пар, тогда их используют для управления несколькими электрическими цепями. Электрические реле выполняют множество функций, связанных с контролем режимов работы важных элементов электрической цепи генераторов, трансформаторов, линий передач, различных приемников.

Интересное видео о работе реле смотрите ниже:

При нарушении нормального режима того или иного элемента соответствующее реле приводит в действие аппаратуру, которая либо восстанавливает нормальный режим работы, либо отключает поврежденный участок. Такие реле — реле защиты — могут «наблюдать» за током в цепи (токовая защита), напряжением на отдельных участках (защита по напряжению), изменениям мощности (реле мощности), изменением частоты тока и т. д.

В зависимости от времени срабатывания — отрезка времени от момента появления управляющего воздействия до момента замыкания контактов реле — различают реле быстродействующие (tср Содержание

  1. Реле по способу воздействия
  2. Реле по способу включения воспринимающего элемента
  3. Реле защиты
  4. Чувствительность реле

Достоинства и недостатки

Реле электромагнитное имеет следующие преимущества над полупроводниковыми конкурентами:

  • коммутация больших нагрузок при малых габаритах;
  • гальваническая развязка между цепью управления и группой коммутации;
  • низкое тепловыделение на контактах и катушке;
  • небольшая цена.

Устройству присущи также недостатки:

  • медленное срабатывание;
  • относительно небольшой ресурс;
  • радиопомехи при переключении контактов;
  • сложность коммутации на постоянном токе высоковольтных и индуктивных нагрузок.

Рабочие напряжение и ток катушки не должны выходить за заданные пределы. При их низких значениях становится ненадежным контактирование, а при высоких — перегревается обмотка, увеличивается механическая нагрузка на детали и может произойти пробой изоляции.

Долговечность реле зависит от вида нагрузки и тока, частоты и количества коммутаций. Больше всего контакты изнашиваются при размыкании, образующем дугу.

Бесконтактные аппараты имеют преимущество, поскольку у них не появляется дуга. Но есть также масса других недостатков, что не дает возможности заменить реле.

Проверка при первом включении

После монтажа нового устройства или отремонтированного ЭМР (после перемотки его катушек) обязательно проведение проверки оборудования. Полный комплекс работ включает в себя следующие операции.

  • Внешний осмотр, внутренняя диагностика и обслуживание (чистка, целостность пломб, состояние уплотнений, выводов).
  • Проверка контактной группы, механизма. При обнаружении дефектов выполняется их регулировка.
  • Тестирование ЭМР на соответствие фактических технических характеристик номинальным параметрам при срабатывании реле, возврате, удержании.
  • Проверка электрической прочности изоляции.
  • Проверка времени задержки при срабатывании или возврате.
  • Тестирование системы в условиях работы при пониженном напряжении.

Твердотельное реле

И вот, если мы соберем все плюсы механических и электронных импульсных реле, то получим достоинства твердотельных.

Суть работы твердотельного реле заключается в использовании эффекта воздействия света на pn-переход. В отличие от механических реле у твердотельных реле отсутствуют механические замыкания и размыкания контактов. Для этих целей в твердотельных реле используются полупроводниковые элементы.


Фото твердотельных реле Schneider Electric с охладителями

Принцип работы

Мы подаем ток на светодиод, и он, в свою очередь, воздействует на pn-переход коммутационной сети, замыкая или размыкая ее.

Твердотельные реле делятся на два основных вида. Это реле постоянного и переменного тока.

Твердотельные реле постоянного тока

Твердотельные реле постоянного тока очень надежны. Их срок службы, по сравнению с механическими, практически бесконечен. Работают они при температурах от -30 +70 градусов Цельсия.

Твердотельные реле переменного тока

Основная особенность твердотельных реле переменного тока — это пониженный уровень электромагнитных помех, малый расход энергии, абсолютная бесшумность и практически мгновенное срабатывание.

Достоинства

  • Бесшумные.
  • Отсутствуют подвижные детали. Срок службы — десятки лет.
  • Коммутация с минимумом помех.
  • Практически мгновенное срабатывание.
  • Малое потребление электроэнергии.
  • Очень малые размеры, при этом могут работать с большими токами.
  • Широкая сфера применения. Благодаря минимальным размерам и большому количеству настроек срабатывания, используются практически везде.
  • Благодаря большому расстоянию между цепью управления и управляемой цепью обеспечивается надежная изоляция.
  • Очень прочные. Почти безразличны к вибрациям и ударам.

Недостатки

Казалось бы, давайте заменим все реле на твердотельные, и бед знать не будем, но здесь не все так просто. Два недостатка у твердотельных реле все же есть. И порой они становятся решающими.

  1. Сильный нагрев.
  2. Высокая цена.

При малых токах величина нагрева, конечно же, не существенна. Однако когда мы говорим о больших потребителях электричества, например, требуется коммутировать электрический обогреватель, то величина нагрева увеличиваются значительно. А если в цепи произойдет короткое замыкание, то полупроводники в твердотельных реле расплавятся очень быстро. Да, реле, конечно, может быть защищено от короткого замыкания и оснащено системой охлаждения, но при этом оно становится достаточно дорогим.

Абсолютная тишина. Можно монтировать на этаже

Полное отсутствие шума в процессе работы этих реле позволяет выполнять монтаж твердотельных реле, где угодно. Можно монтировать в электрических щитах на этажах, здесь ограничений нет.

Твердотельное реле в системах управления и автоматики

Как и электромагнитное реле, твердотельное реле работает, удерживает цепь замкнутой, только в течение того времени, пока на реле подается напряжение. То есть это не тот случай, как с триггером или поляризованным реле, когда подал управляющее напряжение, и «забыл» — цепь будет замкнута сколько угодно долго до следующего отключающего сигнала. Для замыкания цепи на твердотельное реле должно подаваться напряжение постоянно, поэтому это реле не может работать с кнопками без контроллера.

Между кнопками включения света и твердотельным реле всегда требуется контроллер, который подает на реле удерживающее коммутацию напряжение.

Реле промышленного назначения

Чтобы ограничить максимальный ток в сети, вам понадобится использовать реле контроля тока. Оно обеспечивает размыкание цепи тогда, когда превышается пороговое значение тока, в то время как минимального тока размыкает цепь в случае уменьшения этого параметра.

Указательное реле – это электромагнитное устройство особого типа, которое используется в различных сигнализациях, входящих в состав приборов автоматики, защиты или управления. Оно является одним из важных компонентов приборов сейсмостойкого типа.

Реле Бухгольца или как его называют «газовое защитное», необходимо для предотвращения неполадок и уменьшения количества повреждений, связанных с масляными трансформаторами.

Важной составляющей конструкции холодильных, компрессорных и других приборов является реле контроля трехфазного напряжения. Вспомогательным можно назвать реле мощности, функционирование которого связано с направлением мощности

В случае с этими элементами важным показателем является угол максимальной чувствительности

Вспомогательным можно назвать реле мощности, функционирование которого связано с направлением мощности. В случае с этими элементами важным показателем является угол максимальной чувствительности.

Классификация электромагнитных реле

Существующие виды электромагнитных реле контактного типа отличаются по форме магнитной цепи и способу перемещения якоря.

Так схемы электромагнитных реле под №№ 1-4, 6 на рисунке представляют реле с поворотным якорем. На схеме №5 — реле с перемещающимся линейно втяжным якорем.

В зависимости от числа обмоток на сердечнике электромагнитное реле классифицируется как:

• однообмоточное;
• двухобмоточное;
• многообмоточное контактное реле.

Несмотря на конструктивную простоту, электромагнитное контактное реле обеспечивает высокую надёжность в работе железнодорожных систем автоматики и телемеханики.

Классификация реле по степени надёжности подразделяет все контактные электромагнитные реле на ЖД на 2 типа:

• 1 класса надёжности;
• облегчённые.

Облегчённые реле отличаются от реле 1 класса механизмом возврата якоря в исходною позицию при отключении тока: в контактных реле 1 класса якорь возвращается в первоначальное состояние под действием собственного веса, в облегчённых возвращение якоря обеспечивают подвижные контактные пружины.

В настоящее время к 1 классу относятся 4 поколения реле:

1. реле группы НР — нейтральные электромагнитные реле;
2. группы НШ — нейтральные штепсельные нормальнодействующие;
3. НМШ — нейтральные малогабаритные штепсельные;
4. РЭЛ — штепсельные постоянного тока.

Контактные электромагнитные реле 1 класса эксплуатируются в аппаратуре СЦБ, отвечающей за безопасность поездного движения.

Реле облегчённого типа:

1. КДР — кодовое электромагнитное контактное реле нештепсельное;
2. КДРШ — кодовое штепсельное;
3. РЭМ — модифицированный вариант КДР;
4. РЭМШ — модернизированная версия КДРШ.

Облегчённые реле используются, как правило, в системах диспетчерского контроля и в схемах электрической централизации, не связанных напрямую с движением поездов.

Дополнительная классификация реле

Кроме этого, все реле классифицируются по:

• питающему току:

* постоянного тока:

— нейтральные — действие зависит только от магнитного поля;
— поляризованные — работа зависит от направления тока в обмотке;
— нейтрально-поляризованные (комбинированные) — в одной конструкции соединены элементы обоих выше описанных реле ;

* переменного тока;* постоянно-переменного тока;

• времени срабатывания:

* быстродействующие — срабатывание на притяжение и отпускание до 0.03 сек.;* нормальнодействующие — время срабатывание до 0.3 сек.;* медленнодействующие — срабатывание до 1.5 сек.;* реле выдержки времени (времЕнные) — время срабатывания превышает 1.5 сек.

Нужны сцб реле, но нет желания звонить или куда-то ехать? Просто напишите нам, какие именно вы хотите реле электромагнитные купить и в каком количестве. И не забудьте указать свои контактные данные. Нужный вам товар от СЦБ Сервис не заставит себя долго ждать.

Виды ТТР

Твердотельные реле по устройству и принципу работы можно разделить на следующие разновидности:

  • По виду управляющего напряжения – переменное или постоянное (дискретные). Иногда на вход подключается переменный резистор, т.е. используется аналоговое управление, соответственно и выходное напряжение меняется плавно, как в диммере для освещения.
  • По виду коммутируемого напряжения – переменное или постоянное.
  • По количеству фаз для переменного напряжения – одна или три.
  • Для трехфазных – с реверсом или без.
  • По конструкции – монтаж на поверхность или на ДИН-рейку. Хотя, практически все производители предлагают переходные планки для универсального монтажа.

Кроме того, стандартной опцией для коммутации переменного напряжения является переключение в момент перехода через ноль.

Выше уже было фото ТТЛ, у которого вход – постоянное напряжение, выход – переменное (АС-DC). Вот ещё какие реле у меня есть сейчас под рукой:

SSR OMRON DC-DC. Вход – постоянное напряжение до 24 В, выход – тоже постоянное, до 200 В

SSR FOTEK DC-DC – твёрдотельные реле постоянного тока

Этими двумя моделями реле удобно коммутировать нагрузку с постоянным напряжением 24 Вольта, когда управляющий сигнал (тоже 24 В) приходит с выхода контроллера или с датчика. Можно сказать, что это такие компактные усилители тока. Причем коэффициент усиления при этом – около 1000, поскольку ток управляющей цепи – менее 10 мА.

Дальше-больше. Ниже показано трехфазное твердотельное реле. На его входы R, S, T подается три фазы 380В, а с его выходов U, V, W напряжение подается на асинхронный двигатель или трехфазный ТЭН.

Fotek 3 phase. Трехфазное твердотельное реле

Это реле работает (по результатам работы) примерно, как магнитный пускатель с катушкой 24 VDC.

Управляющие контакты показаны поближе:

Fotek 3 phase. Входные управляющие контакты

Видите на фото, под управляющие контакты предусмотрено ещё одно место, которое в данном случае не используется? На этом месте у другой модели подается сигнал реверса. То есть, при подаче на один вход фазы через реле коммутируются для прямого вращения двигателя, при подаче на другой вход – для обратного.

Трехфазные реле с реверсом бывают с коммутацией двух фаз, третья подключена к двигателю постоянно.

А теперь представьте, столько места занимает и сколько шума при работе создает обычное реверсивное реле на такой ток? То-то и оно!

Вот такое же ТТЛ, но помощнее и с управлением от переменки 220В.

Fotek TSR-40AA-H 3 phase 40A

Вроде всё, пишите, у кого какой опыт по применению!

Вот нарыл в свободном доступе файлы, возможно, написано информативнее, чем у меня:• Твердотельные реле Фотек / Твердотельные реле Фотек. Руководство пользователя. Рассмотрена вся линейка Fotek, даны рекомендации по применению и схемы включения., pdf, 757.78 kB, скачан: 3790 раз./ • Твердотельные реле – устройство и принцип работы / Подробно изложено, как устроены и работают твердотельные реле, приведены схемы включения, и т.п. Автор, отзовись!, pdf, 414.19 kB, скачан: 4251 раз./

Заключение

Правильный подбор реле тока всегда будет зависеть от технического назначения, регулировочных характеристик, величины измеряемых и питающих мощностей, порога максимально возможной нагрузки, целесообразности наличия системы задержки времени активации, а также от условий, в которых будет проводиться эксплуатация. Выбранное по главным характеристикам устройство достаточно просто настроить своими руками под определенные нужды, изменяя при этом установки в соответствии с необходимостью.

Большей частью реле максимального тока представляют собой довольно компактные приборы, благодаря этим свойствам они довольно просто устанавливаются в защитные отсеки, отличаются своей взаимозаменяемостью, простотой и надежностью конфигурации. Многие модели предусматривают присоединение дополнительных контактов. Это дает возможность сделать схему цепи немного проще и выдавать дополнительные сигналы для управления.

Благодаря современным технологиям дается возможность своими руками осуществлять контроль показателей напряжения на интегрированных светодиодных экранах. Такие приборы имеют достаточно большой диапазон настроек.

Выводы

  1. Электромагнитные реле не уйдут с рынка электронных компонентов ещё много лет, несмотря на прогресс и миниатюризацию деталей. Напротив, производители продолжают развивать и инвестировать в эту технологию, о чем свидетельствует спектр доступных реле на рынке.
  2. Бистабильные реле становятся все более популярными. Цена у них доступная, что побуждает к внедрению. Акцент на сокращении потребления электроэнергии электронными схемами, вероятно, подтолкнет проектировщиков внимательнее присмотреться к этой архитектуре, особенно там, где автономное питание.

Используйте реле по назначению, соблюдая естественно требование максимального коммутируемого тока, и они будут служить долго и безотказно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector