Расчет емкости конденсатора для трехфазного двигателя
Содержание:
- Расчет емкости конденсатора с помощью онлайн калькулятора
- Пояснения к расчету
- Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)
- Схема подключения «Треугольник»
- Обзор моделей
- Пусковой конденсатор
- Кратные и дольные единицы[ | код]
- Цифровая маркировка конденсаторов онлайн калькулятор
- Расчет параметров конденсатора онлайн
- Емкость конденсатора
- Расчет заряда конденсатора
- Калькулятор емкости последовательного соединения конденсаторов
Расчет емкости конденсатора с помощью онлайн калькулятора
Расчет конденсатора онлайн, который можно произвести с помощью калькуляторов на специальных ресурсах в Интернете, позволяет в считанные секунды получить результат, просто указав в соответствующих полях нужные данные. С их помощью быстро и легко можно рассчитать емкость, заряд, мощность, ток, энергию, и другие свойства конденсатора, нужные для конкретного устройства.
Среди множества видов конденсаторов существует, так называемый, электролитический тип, который используется в асинхронных электродвигателях. Среди его видов выделяют полярный и неполярный. Электролитический полярный конденсатор отличается от неполярного, прежде всего, большей емкостью. Расчет конденсатора для электродвигателя обязательно необходим перед его подключением. Он позволит, к примеру, узнать нужную емкость для конкретного двигателя.
Расчет конденсатора для трехфазного двигателя требуется ещё и для того, что, обычно, если трехфазный асинхронный двигатель с конденсаторным пуском работает нормально, будучи включенным в однофазную сеть, то емкость конденсатора уменьшается, а частота вращение вала увеличивается. При правильном подключении, все эти характеристики будут наблюдаться.
Когда запускается асинхронный двигатель, подключением к сети 220В, необходима высокая емкостьфазодвигающего конденсатора. В Интернете всегда можно найти специальный калькулятор конденсаторов онлайн, который, в частности, позволяет рассчитать их емкость. Калькулятор, который позволяет произвести расчет соединения конденсаторов, а именно емкости двух параллельно соединенных приборов: рабочего и пускового, требует указания в соответствующих полях следующих данных:
- Соединение обмоток двигателя
- Его мощность
- Напряжение в сети
- Коэффициент мощности
- КПД двигателя
После указания всех этих данных, можно получить результаты в виде информации по емкости пускового и рабочего конденсаторов, которая измеряется в мкФ (микроФарадах). Расчет емкости конденсатора для двигателя, а именно для двух, соединенных между собой конденсаторов, в данном случае, зависит от того, каким был способ соединения их обмоток.
Расчет пускового конденсатора и параллельно рабочего предполагает указание двух таких способов подключения как: подключение звездой и треугольником. Формула расчета емкости конденсатора, подключенного звездой, выглядит так: Cр=2800*I/U, а формула расчета конденсатора, подключенного треугольником – это Cр=4800*I/U. Расчёт ёмкости конденсатора для электродвигателя по таким формулам расшифровывается следующим образом:
- Ср означает рабочий конденсатор, пусковой будет обозначаться далее как Сп.
- Ток I определен тут соотношением мощности мотора P с произведением 1,73 напряжения U и коэффициента мощности (cosφ ) с коэффициентом поленого действия (η). То есть I=P/1,73Uηcosφ.
Каждый калькулятор емкости конденсаторов использует свой тип расчета. Например, если говорить о соединенных конденсаторах, где емкость пускового прибора должна быть подобрана в 3 раза большая, чем рабочая емкость, то, в конкретном калькуляторе может быть использован расчет Cп=2,5*Cр, где Сп означает пусковой конденсатор, а Ср – рабочий тип.
Пояснения к расчету
Схема соединения обычно отмечена на самом конденсаторе, и может обозначаться либо звёздой, либо треугольником. Как правило, это две разные формы, ёмкость которых рассчитывается, по- разному:
Схема подключения рабочего и пускового конденсатора при разных способах подключения обмоток | Расчетные зависимости |
---|---|
Ср = 2800*I/U; I = P/(√3*U*η*cosϕ) |
Ср – емкость рабочего конденсатора
Ср = 4800*I/U; I = P/(√3*U*η*cosϕ)
Ср – емкость рабочего конденсатора
Сп = 2,5*Ср, где Сп – емкость пускового конденсатора при любом способе подключения
Расшифровка обозначений:
Ср – емкость рабочего конденсатора, мкФ Сп – емкость пускового конденсатора, мкФ I – ток, А U – напряжение в сети, В η – КПД двигателя в %, деленных на 100 cosϕ – коэффициент мощности
Полученные результаты расчета используются для подбора конденсаторов нужных номиналов. Номинала именно расчетного значения вряд ли можно будет найти, поэтому правила подбора следующие:
- если расчетное значение точно попало в существующий номинал, то в этом случае повезло – берете именно такой.
- если совпадения нет, то рекомендуется выбирать емкость ближайшего нижнего номинального значения. Выбирать выше не следует (особенно для рабочих конденсаторов), так как существует вероятность значительного возрастания рабочих токов и перегрева обмоток.
- По напряжению конденсаторы обязательно подбираются с номиналом не менее, чем в 1,5 раза выше напряжения сети, поскольку в момент пуска напряжение на самом конденсаторе всегда повышенное. Например, для однофазного напряжения 220 В рабочее напряжение конденсатора должно быть не менее 360 В, а по опыту электриков даже не менее 400 В.
Ниже мы приведем таблицу номинальных значений конденсаторов серий СВВ60 и СВВ65. Эти конденсаторы чаще всего применяют при подключении асинхронных двигателей. Серия СВВ65 отличается от серии СВВ60 металлическим корпусом. В качестве пусковых часто применяют электролитические конденсаторы серии CD60. Причем опытные профессионалы не рекомендуют использовать их в качестве рабочих, поскольку продолжительные время работы быстро выводит их из строя.
Полипропиленовые пленочные конденсаторы серий СВВ60 и СВВ65 | Электролитические неполярные конденсаторы серии CD60 | |
---|---|---|
Изображение | ||
Номинальное рабочее напряжение, В | 400; 450; 630 | 220-275; 300; 450 |
Номинальный ряд, мкФ | 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 150 | 5; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500 |
Иногда бывает рациональнее использовать два и более конденсатора, чтобы получить нужную емкость. При этом они могут быть соединены последовательно или параллельно. При параллельном соединении результирующая емкость будет складываться, при последовательном она будет меньше емкости любого из конденсаторов. Для расчета данного соединения мы также подготовили для вас специальный калькулятор.
Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)
При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радиоэлементом индикации на настоящий момент является светодиод.
В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока — розетки, которая есть в любой благоустроенной квартире. Если вам необходимо будет запитать несколько светодиодов одновременно, то об этом мы также упомянем в нашей статье.
Фактически такие схемы применяются для светодиодных гирлянд или ламп, это немного другое. Фактически здесь необходимо реализовать так называемый драйвер для светодиодов. Итак, давайте не будем все валить в одну кучу. Попробуем разобраться по порядку.
Принцип понижения напряжения питания для светодиода
Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор.
В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения.
Что же, теперь обо всех этих вариантах по порядку.
Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)
Схема подключения светодиода к 220 вольтам на вид не сложная, принцип ее работы прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода.
Так в итоге полностью заряжается конденсатор. Далее приходит вторая полуволна, когда конденсатор начинает разряжаться. В этом случае напряжение также идет через стабилитрон, который теперь работает в своем штатном режиме и через светодиод. В итоге на светодиод в это время подается напряжение равное напряжению стабилизации стабилитрона.
Здесь все вроде как просто и теоретически реализуется нормально. Однако точные расчеты не столь просты. Ведь по сути надо рассчитать емкость конденсатора, который будет являться в данном случае гасящим. Делается это по формуле.
Прикинем: 3200*0,02/√(220*220-3*3)=0,29 мКФ. Вот какой должен быть конденсатор при напряжении для светодиода 3 вольта, а токе 0,02 А. Вы же можете подставить свои значения и рассчитать свой вариант.
Схема подключения «Треугольник»
Само подключение является относительно легким, происходит присоединения токопроводящего провода к пусковому конденсатору и к клеммам двигателя (или мотора). То есть если более упрощенно взять есть мотор в нем находятся три токопроводящие клеммы. 1 – ноль, 2 – рабочая, 3 –фаза.
Провод питания заголяется и в нем есть два основных провода в синей и коричневой обмотке, коричневая присоединяется к 1 клемме, ней же присоединяется и один из проводов конденсатора, ко второй рабочей клемме происходит присоединение второго провода конденсатора, ну а к фазе подключается синий провод питания.
Если мощность двигателя является маленькой, до полтора кВт, о в принципе можно использовать только один конденсатор. Но при работе с нагрузками и с большими мощностями обязательное использование двух конденсаторов, они между собой последовательно соединены, но между ними установлен пусковой механизм, в народе называемый «тепловой», который отключает конденсатор при достижении необходимого объёма.
Небольшое напоминание, что конденсатор с меньшей мощностью, пусковой, будет включаться на небольшой промежуток времени для увеличения пускового момента. Кстати модно использовать механический выключатель, который пользователь сам будет включать на заданное время.
Нужно понять – сама обмотка двигателя уже имеет подключение по схеме «звезда», но электрики ее с помощью проводов превращают в «треугольник». Тут главное распределить провода, которые входят в распределительную коробку.
Схема подключения “Треугольник” и “Звезда”
Обзор моделей
конденсатор CBB-60
Существует несколько популярных моделей, которые можно встретить в продаже.
Стоит отметить, что эти модели отличаются не по емкости, а по виду конструкции:
- Металлизированные полипропиленовые варианты исполнения марки СВВ-60. Стоимость подобного варианта исполнения около 300 рублей.
- Пленочные марки НТС стоят несколько дешевле. При одинаковой емкости, стоимость составляет около 200 рублей.
- Э92 – продукция отечественных производителей. Их стоимость небольшая – порядком 120-150 рублей при той же емкости.
Существуют и другие модели, зачастую они отличаются типом используемого диэлектрика и видом изоляционного материала.
Пусковой конденсатор
Ознакомьтесь также с этими статьями
- Оборудование открытых площадей жилых домов под функциональные пространства
- Инженерно геологические изыскания
- Столешницы из натурального каменного шпона – стоит ли брать?
- Декоративные штукатурки для внутренней отделки
Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.
При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.
Кратные и дольные единицы[ | код]
Образуются с помощью стандартных приставок СИ.
Кратные | Дольные | ||||||
величина | название | обозначение | величина | название | обозначение | ||
101 Ф | декафарад | даФ | daF | 10−1 Ф | децифарад | дФ | dF |
102 Ф | гектофарад | гФ | hF | 10−2 Ф | сантифарад | сФ | cF |
103 Ф | килофарад | кФ | kF | 10−3 Ф | миллифарад | мФ | mF |
106 Ф | мегафарад | МФ | MF | 10−6 Ф | микрофарад | мкФ | µF |
109 Ф | гигафарад | ГФ | GF | 10−9 Ф | нанофарад | нФ | nF |
1012 Ф | терафарад | ТФ | TF | 10−12 Ф | пикофарад | пФ | pF |
1015 Ф | петафарад | ПФ | PF | 10−15 Ф | фемтофарад | фФ | fF |
1018 Ф | эксафарад | ЭФ | EF | 10−18 Ф | аттофарад | аФ | aF |
1021 Ф | зеттафарад | ЗФ | ZF | 10−21 Ф | зептофарад | зФ | zF |
1024 Ф | иоттафарад | ИФ | YF | 10−24 Ф | иоктофарад | иФ | yF |
применять не применяются или редко применяются на практике |
- Дольную единицу пикофарад до 1967 года называлимикромикрофарада (русское обозначение: мкмкф; международное: µµF).
- На схемах электрических цепей и (часто) в маркировке ранних конденсаторов советского производства целое число (например, «47») означало ёмкость в пикофарадах, а десятичная дробь (например, «10,0» или «0,1») — в микрофарадах; никакие буквенные обозначения единиц измерения ёмкости на схемах не применялись… Позже и до сегодняшних дней: любое число без указания единицы измерения — ёмкость в пикофарадах; с буквой н — в нанофарадах; а с буквамимк — в микрофарадах. Использование других единиц ёмкости на схемах не стандартизовано (как и обозначение номинала на конденсаторах). На малогабаритных конденсаторах используют различного рода сокращения: например, после двух значащих цифр ёмкости в пикофарадах указывают число следующих за ними нулей (таким образом, конденсатор с обозначением «270» имеет номинальную ёмкость 27 пикофарад, а «271» — 270 пикофарад)[источник не указан 2610 дней ].
- В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u («uF» вместо «µF») из-за отсутствия в раскладке клавиатуры греческих букв.
Цифровая маркировка конденсаторов онлайн калькулятор
- Главная
- Форум
- Новости
- Блог
- Почта
- Обратная связь
- Ссылки
- Сотрудничество
-
- Авторам
- Вебмастерам
- Расчёты онлайн
-
- Калькулятор номинала SMD резистора
- Генератор символов для LCD HD44780
- Расчёт делителя напряжения
- Определение сопротивлений резисторов по цветовой маркировке
- Расчёт сопротивления резистора для светодиода
- Расчёт ширины дорожки печатной платы
- Цветовая маркировка резисторов, конденсаторов и индуктивностей
- Расчёт резонансной частоты колебательного контура
- Калькулятор фьюзов AVR
- Расчёт DC-DC преобразователя на базе MC34063A
- Расчёт частоты таймера 555
- Расчёт линейного стабилизатора
- Конвертер даты и времени в UNIX формат и обратно
- Cхемы
- Цифровые устройства
-
- Автоматика
- Программаторы
- Таймеры, часы, счётчики
- Для ПК
- Для дома
- Игрушки
- Аналоговые устройства
-
- Передатчики и приёмники
- Генераторы
- Усилители
- Видео и ТВ
- Регуляторы
- Звукотехника
-
- Усилители
- Фильтры, эквалайзеры
- Для музыкантов
- Акустика
- Разное
- Светотехника
-
- Мигалки
- Освещение
- Светоэффекты
- Детектирование
- Измерения
-
- Осциллографы
- Измерители L-C-R
- Вольт/Амперметры
- Термометры
- Питание
-
- Блоки питания
- Преобразователи и ИБП
- Зарядные устройства
- Альтернативная энергетика
- Arduino
- Авто и мото
- Станки с ЧПУ
- Статьи
- Антенны
- Обучалка
-
- Аналоговая техника
- Цифровая техника
- Микроконтроллеры
- Аудиотехника
- Видеотехника
- Программные пакеты
- Измерения
- Разное
- Секреты самодельщика
- Файлы
- Программы
-
- CADs
- Компиляторы, программаторы
- Для печатных плат
- Схемы, панели и шкалы
- Расчёты
- Разное
- Книги
-
- Verilog и VHDL
- Цифровые устройства и МП
- Математический анализ
- Основы теории цепей
- Теория вероятностей
- РТ цепи и сигналы
- Метрология
- Микроконтроллеры
- Программирование
- Справочники
- Схемотехника
- Устройства СВЧ и антенны
- РПДУ и УГФС
- РПУ и УПиОС
- РТС и СТРТС
- Телевидение и видеотехника
- Журналы
-
- Радиомир
- Радиоаматор
- Радиолоцман
- Радиолюбитель
- Радиоежегодник
- Радиоконструктор
- Учебные материалы
-
- Математический анализ
- Теория вероятностей
- РТ цепи и сигналы
- Радиоавтоматика
- Метрология
- ОКиТПРЭС
- Гуманитарные науки
- Электроника
- Цифровые устройства и МП
- Электродинамика и РРВ
- Схемотехника
- УГиФС и РПДУ
- Основы теории скрытности
- Устройства СВЧ и антенны
- УПиОС и РПУ
- ЭПУ РЭС
- Оптические устройства
- ОКПиМРЭС
- ССПРЭУС
- РТС и СТРТС
- СИТ
- Телевидение и видеотехника
- Разное
- Документация
- Микросхемы
-
- 140
- 143
- 148
- 153
- 154
- 155
- Разъёмы
-
- Типы разъёмов
- Распиновка разъёмов
- Datasheets
-
- Analog Devices
- Atmel
- Microchip
- NXP Semiconductors
- Texas Instruments
- Маркировка компонентов
Определение ёмкости конденсатора по цифровой маркировке
Цифровая маркировка на малогабаритных конденсаторах чаще всего она встречается виде трёх цифр.
Первые две из них определяют ёмкость в единицах пФ, третья цифра соответствует количеству нулей. Если конденсатор имеет ёмкость меньше 10 пФ, последней цифрой может быть «9». При емкостях меньше 1 пФ первая цифра может быть «0». Буквенное разделение с помощью «R» используется в качестве десятичной запятой. Например, код 020 равен 2.0 пФ, код 0R3 — 0.3 пФ. На ряду с трёхзнаковым цифровым обозначением широко используется и четырёхзнаковое, в этом варианте первые три цифры обозначают ёмкость в пФ, а последняя цифра количество нулей.Маркировка ёмкости в микрофарадах.
Вместо десятичной точки может ставиться буква «R».Смешанная, буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения.
В отличие от первых трёх параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку. Если в конце кода стоит буква — это допуск. Он совпадает с допуском резисторов.
Расчет параметров конденсатора онлайн
Не знаю как Вам, а мне никогда не нравилось работать и вычислять ёмкости конденсаторов. Больше всего раздражало наличие в исходных данных, ёмкостей в разных номиналах, в пикофарадах, в нанофарадах, микрофарадах. Их приходилось переводить в Фарады, что влекло за собой глупейшие ошибки в расчетах.
Конденсатор — в принципе это любая конструкция, которая может сохранять накопленный электрический потенциал. Если же эта конструкция, не только хранит электроэнергию, но и генерирует её, то это уже источник электропитания и никак не конденсатор.
Конструкция конденсаторов может быть любой, но чаще всего в практике используется плоский конденсатор, состоящий из двух проводящих пластин, между которыми находится какой либо диэлектрик.
Это связано с тем, что расчет ёмкости такого конденсатора ведется по известной формуле и простотой его создания.
Свернув такой плоский конденсатор в рулон, мы получаем, что при фактическом скромном размере «рулона», там находится плоский конденсатор, длиной в десятки сантиметров и обладающий повышенной ёмкостью.
Емкости конденсаторов некоторых форм известны, и мы дальше их рассмотрим.
Но хотелось бы заметить, что на наш взгляд, потенциал развития конденсаторов до конца не завершен.
Ведь форма конструкции какого либо конденсатора может быть любая, материалы из которого сделаны обкладки или диэлектрический слой тоже могут быть любыми в пределах таблицы Менделеева.
Единственная сложность, это невозможность теоретически просчитать потенциальную ёмкость, новосозданного (другой конструкции) конденсатора. Это усложняет нахождение самой лучшей конструкции конденсатора.
Данный бот рассчитывает параметры типовых форм конденсаторов. Отличие от других калькуляторов, присутствующих в интернете, это возможность задавать параметры, которые Вам известны, для того что бы рассчитать остальные.
И последнее нововведение, которое вы можете использовать. Вам не обязательно придется переводить заданные данные в метры, фарады и т.д. Достаточно обозначить размерность данных.
- Например, если ёмкость известна и равно 100 пикофарад, то боту можно так и написать c=100пикофарад или с=100пФ, бот сам переведет в Фарады.
- Результат, тоже будет выдан оптимально визуальному восприятию пользователя.
- Это стало возможно с созданием бота Система единиц измерения онлайн
Плоский конденсатор. Параметры
Полученные характеристики плоского конденсатора |
Самая простая и самая распространенная конструкция конденсатора это два плоских проводника разделенных тонким слоем диэлектрика ( то есть материала не проводящего электрический ток).
Ёмкость такого сооружения определяется следующей формулой.
где ε0 = 8,85.10-12 Ф/м — абсолютная диэлектрическая проницаемость
Если же конденсатор состоит не из пары пластин, а каого то n-ого количества плоских пластин то ёмкость такого «слоёного» конденсатора составит
Еще интереснее выглядит формуа такого «слоёного» конденсатора, если в слоях находятся разные диэлектрики , разной толщины d
- S- площадь одной из обкладок конденсатора ( предполагаем что другая обкладка имеет такую же площадь)
- d- расстояние между обкладками
- С- ёмкость конденсатора
- Рассмотрим примеры
Задача: Ёмкость плоского конденсатора 350 нанофарад, расстояние между обкладками 1 миллиметр, и заполнено воздухом. Определить какова площадь обкладок?
Сообщаем боту что нам известно: C=350нФ, d=1мм. Так как у воздуха диэлектрическая проницаемость 1.00059 то e=1.00059. Поле площадь очистим, так именно его мы будем определять
Получаем вот такой ответ
Полученные характеристики плоского конденсатора |
d = 1 милиметр e = 1.00059 C = 350 нанофарад S = 39.524703024086 м2 |
Ответ, площадь обкладок конденсатора при таких значениях должна составлять почти 40 квадратных метров.
Цилиндрический КОНДЕНСАТОР
Полученные характеристики цилиндрического конденсатора |
Цилиндрический конденсатор представляет в простейшем случае две трубки разного диаметра вложенных друг в друга. разделенных диэлетриком
Иногда может получится так, что ёмкость цилиндрического конденсатора станет отрицательной величиной. Ничего страшного, это лишь говорит о том что Вы перепутали радиусы внешней и внутренней оболочки местами.
Емкость конденсатора
Наиболее значимый параметр данного прибора – это его ёмкость. От нёё зависят его сфера применения, условия эксплуатации и назначение. Измеряется ёмкость в фарадах. В отечественной литературе данный параметр обозначается буквой «Ф», в зарубежной – «F». На самих электронных компонентах можно встретить такую буквенную кодировку: pF, nF или uF. Она указывают на то, что радиодеталь обладает ёмкостью, равной 10-12, 10-9 и 10-6 фарад. Рядом также будет маркировка цифрами, выполняющими роль множителя, т.е. 2,2uF = 2,2*10-6 фарад.
Дополнительная информация. Отрицательная степень десяти часто вызывает трудности даже у бывалых специалистов. Для удобного преобразования единиц измерения всегда можно использовать калькулятор конденсаторов онлайн. Также для того, чтобы вычислить ёмкость имеющейся детали, подойдёт цифровой мультиметр с соответствующим режимом измерения.
Сам конденсатор представляет собой пару металлических пластин. Их поперечные размеры должны быть намного больше, чем расстояние между ними. Посередине пластин помещён слой диэлектрика. Во время работы прибора на его выводы подаётся напряжение. В результате электроны пытаются прийти в движение, но не могут преодолеть диэлектрик, из-за чего между пластинами накапливается некоторый электрический заряд. Он измеряется в кулонах. Способность конденсатора накапливать электрический заряд называется его ёмкостью. Если рассматривать аналогию с сосудом для жидкости, то это его объём.
Расчет заряда конденсатора
После расчета емкости, необходим расчет заряда конденсатора. Начальный заряд прибора равен нулю. Подключением к гальванической батарее или к другому источнику постоянной ЭДС конденсаторы заряжают. Чтобы правильно рассчитать заряд конденсатора от источника постоянной ЭДС, существует также специальный калькулятор конденсаторов онлайн, в котором лишь нужно указать следующие данные:
- ЭДС источника в Вольтах,
- сопротивление в Омах,
- емкость в микроФарадах,
- время зарядки в миллисекундах.
Каждый такой калькулятор расчета конденсаторов будет также указывать точность вычисления, с которой будут получены результаты. После нажатия кнопки «Рассчитать», в результатах реально получить:
- постоянную времени RC-сети в миллисекундах,
- время зарядки в миллисекундах,
- требуемый начальный ток в Амперах,
- максимальную рассеиваемую мощность в Ваттах,
- напряжение в Вольтах,
- заряд в микроКулонах,
- энергию в микроДжоулях,
- а также работу, совершенную источником, в микроДжоулях.
Используя специальные онлайн калькуляторы для расчета конденсатора, вам не придется самостоятельно проводить сложные подсчеты, искать нужные формулы, разбираться и вникать в сложные для вас схемы. Все это сделает калькулятор онлайн за вас.
Калькулятор емкости последовательного соединения конденсаторов
Калькулятор позволяет рассчитать емкость нескольких конденсаторов, соединенных последовательно.
Пример. Рассчитать эквивалентную емкость двух соединенных последовательно конденсаторов 10 мкФ и 5 мкФ.
Введите значения емкости в поля C1 и C 2, добавьте при необходимости новые поля, выберите единицы емкости (одинаковые для всех полей ввода) в фарадах (Ф), миллифарадах (мФ), микрофарадах (мкФ), пикофарадах (пФ), нанофарадах (нФ) и нажмите на кнопку Рассчитать.
1 мФ = 0,001 Ф. 1 мкФ = 0,000001 = 10⁻⁶ Ф. 1 нФ = 0,000000001 = 10⁻⁹ Ф. 1 пФ = 0,000000000001 = 10⁻¹² Ф.
В соответствии со вторым правилом Кирхгофа, падения напряжения V₁, V₂ and V₃ на каждом из конденсаторов в группе из трех соединенных последовательно конденсаторов в общем случае различные и общая разность потенциалов V равна их сумме:
По определению емкости и с учетом того, что заряд Q группы последовательно соединенных конденсаторов является общим для всех конденсаторов, эквивалентная емкость Ceq всех трех конденсаторов, соединенных последовательно, определяется как
Для группы из n соединенных последовательно конденсаторов эквивалентная емкость Ceq равна величине, обратной сумме величин, обратных емкостям отдельных конденсаторов:
Эта формула для Ceq и используется для расчетов в этом калькуляторе. Например, общая емкость соединенных последовательно трех конденсаторов емкостью 10, 15 and 20 мкФ будет равна 4,62 мкФ:
Если конденсаторов только два, то их общая емкость определяется по формуле
Если имеется n соединенных последовательно конденсаторов с емкостью C, их эквивалентная емкость равна
Отметим, что для расчета общей емкости нескольких соединенных последовательно конденсаторов используется та же формула, что и для расчета общего сопротивления параллельно соединенных резисторов.
Отметим также, что общая емкость группы из любого количества последовательно соединенных конденсаторов всегда будет меньше, чем емкость самого маленького конденсатора, а добавление конденсаторов в группу всегда приводит к уменьшению емкости.
Отдельного упоминания заслуживает падение напряжения на каждом конденсаторе в группе последовательно соединенных конденсаторов. Если все конденсаторы в группе имеют одинаковую номинальную емкость, падение напряжения на них скорее всего будет разным, так как конденсаторы в реальности будут иметь разную емкость и разный ток утечки. На конденсаторе с наименьшей емкостью будет наибольшее падение напряжения и, таким образом, он будет самым слабым звеном этой цепи.
Для получения более равномерного распределения напряжений параллельно конденсаторам включают выравнивающие резисторы. Эти резисторы работают как делители напряжения, уменьшающие разброс напряжений на отдельных конденсаторах. Но даже с этими резисторами все равно для последовательного включения следует выбирать конденсаторы с большим запасом по рабочему напряжению.
Если несколько конденсаторов соединены параллельно, разность потенциалов V на группе конденсаторов равна разности потенциалов соединительных проводов группы. Общий заряд Q разделяется между конденсаторами и если их емкости различны, то заряды на отдельных конденсаторах Q₁, Q₂ and Q₃ тоже будут различными. Общий заряд определяется как
По определению емкости, эквивалентная емкость группы конденсаторов равна
Для группы n включенных параллельно конденсаторов
То есть, если несколько конденсаторов включены параллельно, их эквивалентная емкость определяется путем сложения емкостей всех конденсаторов в группе.
Возможно, вы заметили, что конденсаторы ведут себя противоположно резисторам: если резисторы соединены последовательно, их общее сопротивление всегда будет выше сопротивлений отдельных резисторов, а в случае конденсаторов всё происходит с точностью до наоборот.